Lecture 23:
Unsolvable Problems

Part 1 of 2



Outline for Today

* Self-Reference Revisited
 Programs that compute on themselves.
* Self-Defeating Objects
* Objects “too powerful” to exist.
 The Fortune Teller
« Can you escape your fate?
« Why Do Programs Loop?
* ... and can we eliminate loops?

e Undecidable Problems

 Something beyond the reach of algorithms.



Recap from Last Time



R and RE

A language L is recognizable if there isa TM M
with the following property:

Vw € 2*, (M accepts w o w € L).

That is, for any string w:
« If we L, then M accepts w.
« If w ¢ L, them M does not accept w.
- What does this mean?
This is a “weak” notion of solving a problem.

The class RE consists of all the recognizable
languages.



R and RE

A language L is recognizable if there isa TM M
with the following property:

Vw € 2*, (M accepts w o w € L).

That is, for any string w:

« If we L, then M accepts w.
« If w ¢ L, them M does not accept w.

- It might reject w, or it might loop on w.
This is a “weak” notion of solving a problem.

The class RE consists of all the recognizable
languages.



R and RE

A language L is decidable if there is a TM M with
the following properties:

Vw € 2*, (M accepts w o w € L).
M halts on all inputs.
That is, for any string w:

« If we L, then M accepts w.
« If w & L, then M rejects w.
This is a “strong” notion of solving a problem.

The class R consists of all the decidable languages.



The Universal TM

 The universal Turing machine, denoted Uy, is a
TM with the following behavior: when run on a

string (M, w), where M is a TM and w is a string,

accept (M, w) if M accepts w,
reject (M, w) it M rejects w, and
loop on (M, w) if M loops on w.

* Arm is the language recognized by the universal
TM. This is the language

Arm ={ (M, w) | Mis a TM and M accepts w }

° UTM is a 2?2? for AT1\/[.



The Universal TM

 The universal Turing machine, denoted Uy, is a
TM with the following behavior: when run on a

string (M, w), where M is a TM and w is a string,

accept (M, w) if M accepts w,
reject (M, w) it M rejects w, and
loop on (M, w) if M loops on w.

* Arm is the language recognized by the universal
TM. This is the language

Arm ={ (M, w) | Mis a TM and M accepts w }

* Umis a recognizer for Arm.



Self-Retferential Programs

 Computing devices can compute on their
own source code:

Theorem: It is possible to construct
TMs that perform arbitrary computations
on their own source code.

* This allows us to write programs that
work on their own source code.



void cormorant() {
string me = /* source code of
* cormorant
*/;

cout << me << endl;

bool curlew(string input) {
string me = /* source code of
* curlew
*/;

return input == me;

int avocet() {
string me = /* source code of
* avocet
*/;
int result = 0;
for (char ch: me) {

if (ch == 'a') result++;

}

return result;

Answer at

hittps://cs103.stanford.edu/pollev

What do each of these pieces of code do?


https://cs103.stanford.edu/pollev

New Stuff!



Part One: Selt-Defeating Objects



A self-defeating object is an object whose
essential properties ensure it doesn’t exist.



Question: Why is there no largest integer?

Answer: Because if n is the largest integer,
what happens when we look at n+17?



Selt-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.
Contradiction! H-ish



Selt-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1. , .
We're using n to

But then n isn’t the lard construct something that
undermines n, hence the

term “self-defeating.”

Contradiction! B-ish




An Important Detail



Caretul — we're

assuming what we're
Trying To prover:

Claim: There is a largest integer.
Proof: Assume x is the largest integer.

Notice that x > x - 1.
So there’s no contradiction. W-ish

How do we know there’s
no contradiction? we
just checked one case.,




Selt-Defeating Objects

* If you can show
X exists - L

then you know that x doesn’t exist. (This is
a proof by contradiction.)

 If you can show
X exists - T

you cannot conclude that x exists. (This is
not a valid proof technique.)



Part Two: The Fortune Teller



The Fortune Teller

« A fortune teller appears who
claims they can see into the

future. ~—
 For a nominal fee, the k\
fortune teller will tell you

anything you want to know
about the future.

 Of course, the fortune teller /

v %

is a lying liar who lies. No
one can see the future!

7

* The fortune teller makes a
living taking money from
unsuspecting townsfolk.
Someone needs to put an
end to this!



The Fortune Teller

* One day, a trickster arrives.

The trickster wants to expose 00 o0
that the fortune teller is a S o
fraud. ‘\

* The trickster says the

following:

“I have a yes/no question

about the future. But
before I ask my question,
let’s talk payment.

If you answer ‘yes,” then I'll

pay you $42. Trickster pays $42 if the

If you answer ‘no,’ then Il fortune teller answers “yes.”
pay you $137. Trickster pays $137 if the

 The fortune teller thinks for a fortune teller answers “no.”

moment, then agrees.




The Fortune Teller

* The trickster then asks
this question:

“Am I going to
pay you $1372”

 The fortune teller is
trapped!

« Why?

Answer at

https://cs103.stanford.edu/pollev
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Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”



https://cs103.stanford.edu/pollev

The Fortune Teller

 The payment scheme the fortune teller agreed to means
Fortune Teller Says Yes < Trickster Pays $42.
» The trickster’s question to the fortune teller means
Fortune Teller Says Yes < Trickster Pays $137.
« Putting this together, we get
Irickster Pays $137 < Trickster Pays $42.
« This is impossible!

7
>
*
@ g Trickster pays $42 if the

fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”




The Fortune Teller

« The fortune teller is a self-defeating object.

« The trickster’s strategy is to couple the fortune teller’s
behavior to what the future holds.

 The trickster’s behavior is chosen in advance to make the
fortune teller’s answer wrong.

 Therefore, the fortune teller can’t answer all questions
about all people in the future.

4
>
*
@ g Trickster pays $42 if the

fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”




Part Three: Why Do Programs Loop?



Thoughts on Loops

* In practice, the programs we write
sometimes go into infinite loops.

* In Theoryland, Turing machines are allowed
to loop. This happens if they don’t accept and
don’t reject.

* Question: Why are infinite loops possible?

* Or rather: are infinite loops an inherent part
of computation, or are they some weird sort
of “accident” in how we program computers?



Thoughts on Loops

 [Major] Theorem: The language Amwv is
recognizable, but undecidable.

 There’s a recognizer for Arv (specifically, the
universal Turing machine Ury).

It is impossible to build a decider for this
language.

» Stated ditferently, there’s a program we can
write (a universal TM) that has to loop
infinitely on some inputs.

* Goal: Prove this theorem, and explore its
theoretical and philosophical implications.



Arv Revisited

As a refresher, the language A is
Arm={ (M, w) | Mis a TM and M accepts w }.

The universal TM Urv has the following behavior
when given as input a TM M and a string w:

« If M accepts w, then Um accepts (M, w).
 If M rejects w, then Um rejects (M, w).
e If M loops on w, then Um loops on (M, w).

UM is a recognizer for Arv, but because of that last
case it’s not a decider for Arm.



Arv Revisited

* As a refresher, the language A is
Arm={ (M, w) | Mis a TM and M accepts w }.

 Given a TM M and a string w, a decider D for Amm
would need to have this behavior:

« If M acceptsw, then D ? (M, w).
« If M rejectsw, then D ? (M, w).
« If Mloopsonw, then D ? (M, w).

Answer at

https://cs103.stanford.edu/pollev
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Arv Revisited

As a refresher, the language A is
Arm={ (M, w) | Mis a TM and M accepts w }.

Given a TM M and a string w, a decider D for Amwm
would need to have this behavior:

« If M acceptsw, then D ? (M, w).
« If M rejectsw, then D ? (M, w).
« If Mloopsonw, then D ? (M, w).

This is basically the same set of requirements as
Umv, except for what happens if M loops on w.

Our goal is to prove that there is no way to build a
program that meets these requirements.



Arv Revisited

As a refresher, the language A is
Arm={ (M, w) | Mis a TM and M accepts w }.

Given a TM M and a string w, a decider D for Amwm
would need to have this behavior:

e If M acceptsw, then D accepts (M, w).
e If Mrejectsw, then D rejects (M, w).
« If Mloopsonw, then D rejects (M, w).

This is basically the same set of requirements as
Umv, except for what happens if M loops on w.

Our goal is to prove that there is no way to build a
program that meets these requirements.



Arv Revisited

* We can envision a decider for Arv as a function
bool willAccept(string fn, string input)

that takes as input the source code of a function (fn)
and a string representing an input to that function
(input).

It then does the following:
o If fn(input) returns true, willAccept(fn, input) returns true.
o If fn(input) returns false, willAccept(fn, input) returns false.
o If fn(input) loops, then willAccept(fn, input) returns false.

« We’re going to show it’s impossible to write a function
that actually does this. But for now, let’s just explore
what such a decider would do.



function = "bool f(string input) {

if (input == "") return false;
return input[0] == 'a';

b

input = "abbababba";

willAccept(function, input) = ?

function = "bool g(string input) {
while (true) {
input += input;
}

",
3

input = "yay! ";

willAccept(function, input) = ?

function = "bool h(string input) {

int n = input.length();
while (n > 1) {
if (n%2==0)n /= 2;
else n = 3*n + 1;
}

return true;

3

input = /* 107 a's */;

willAccept(function, input) = ?

Answer at

https://cs103.stanford.edu/pollev

For each of these instances, what does
willAccept(function, input) return?


https://cs103.stanford.edu/pollev

Deciding Arm

* Surprising fact: until 2019, no one knew
whether there were integers x, y, and z where

x>+ y° + 2° = 33.

* A heavily optimized computer search found this
answer:

x = 8,366,128,975,287,528
y =-8,778,405,442,8062,239
z=-2,736,111,4638,307,040

 As of November 2025, no one knows whether
there are integers x, y, and z where

x>+ y+ 22 =114.



Deciding Arm

« Consider the language
L={a"|dxeZ yeZ. 3z€eZ. 3+ y  +22=n}
 Here’s code for a recognizer to see whether such a triple exists:

bool hasTriple(int n) {
for (int max = 0; ; max++)
for (int X = -max; X <= max; X++)
for (int y = -max; y <= max; y++)
for (int z = -max; z <= max; z++)
1f (X*X*X + y*y*y + z*z*z == n)
return true;

}
« Imagine calling willAccept(/* hasTriple code */, 114).

 If such a triple exists, willAccept returns true.
 If no such triple exists, willAccept returns false.

 Key Intuition: However willAccept is implemented, it has to be
clever enough to resolve open problems in mathematics!



Why is Arm Hard?

e Intuition: A decider for A would be able to...

e ... determine whether the hailstone sequence terminates
for any input. (Write a recognizer that runs the hailstone
sequence, then feed it into the decider for Arm.)

« ... see if any number is the sum of three cubes. (Write a
recognizer that tries all infinitely many triples of
integers, then feed it into the decider for Arw.)

e ... and much, much more.

* In other words, this seemingly simple problem of
“is this program going to terminate?” accidentally
scoops up a bunch of other seemingly harder
problems.



Part Four: Putting It All Together



To Recap

 We're assuming that, somehow, someone wrote a
function

bool willAccept(string function, string input);

that takes the code of a function and an input to
that function, then

 returns true if function(input) returns true, and

 returns false if function(input) doesn’t return true.

* Goal: Show that this decider is “self-defeating;”
its power is so great that it undermines itselt.

* Idea: Convert the fortune teller story into a
program.



CAm I going\

to pay you
$137?

_/

—
@\

0 0

T
ANEVA

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”




bool willAccept(string function, string input) {
// Returns true if function(input) returns true.
// Returns false otherwise.

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

A decider for Arvm has to have this behavior.

trickster(input) returns true

g

willAccept(me, input) returns true 3

g

trickster(input) does not return trueJ

Because of how we wrote trickster.

trickster willAccept



bool willAccept(string function, string input) {
// Returns true if function(input) returns true.
// Returns false otherwise. A self—defeating

object,

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Using That object
against ifself,



bool willAccept(string function, string input) {
// Returns true if function(input) returns true.
// Returns false otherwise.

*The largest
infeger n,”

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

*The infeger
n+ 1,”°

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.
Notice that n < n+1.
But then n isn’t the largest integer.

Contradiction! -ish



Theorem: Arv € R.



Theorem: Arv € R.
Proof:



Theorem: Arv € R.

Proof: By contradiction; assume that Arv € R.



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise.



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Since willAccept decides Arv and me holds the source of trickster, we know that

willAccept(me, input) returns true if and only if trickster(input) returns true.



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Since willAccept decides Arv and me holds the source of trickster, we know that
willAccept(me, input) returns true if and only if trickster(input) returns true.
Given how trickster is written, we see that

willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.
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Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
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return !willAccept(me, input);

}

Since willAccept decides Arv and me holds the source of trickster, we know that
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trickster(input) returns true if and only if trickster(input) doesn’t return true.

This is impossible.
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that takes in the source code of a function function and a string w, then returns
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this function trickster:
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willAccept(me, input) returns true if and only if trickster(input) returns true.
Given how trickster is written, we see that
willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.
This means that
trickster(input) returns true if and only if trickster(input) doesn’t return true.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and Arv is undecidable.



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Since willAccept decides Arv and me holds the source of trickster, we know that
willAccept(me, input) returns true if and only if trickster(input) returns true.
Given how trickster is written, we see that
willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.
This means that
trickster(input) returns true if and only if trickster(input) doesn’t return true.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and Aryv is undecidable. B



Regular

Languages

All Languages



What Does This Mean?

* In one fell swoop, we've proven that

- A, 1s undecidable; there is no general

algorithm that can determine whether a TM
will accept a string.

« R # RE, because A_, € Rbut A, € RE.

« What do these three statements really
mean? As in, why should you care?



A ¢ R

- What exactly does it mean for A, to be
undecidable?

Intuition: The only general way to find
out what a program will do is to run it.

* As you'll see, this means that it's provably
impossible for computers to be able to
answer most questions about what a
program will do.



A, ¢ R

« At a more fundamental level, the existence of
undecidable problems tells us the following:

There is a difference between what is true
and what we can discover is true.

 Given a TM M and a string w, one of these two
statements is true:

M accepts w M does not accept w

But since A, is undecidable, there is no

algorithm that can always determine which of
these statements is true!



R # RE

e Because R # RE, there is a difference
between decidability and recognizability:

In some sense, it is fundamentally
harder to solve a problem than it is to
check an answer.

 There are problems where, when the
answer is “yes,” you can confirm it (run a
recognizer), but where if you don’t have
the answer, you can’t come up with it in a
mechanical way (build a decider).




Next Time

- Why All This Matters
 Important, practical, undecidable problems.
* Intuiting RE
 What exactly is the class RE all about?
» Verifiers
« A totally different perspective on problem solving.

* Beyond RE

 Finding an impossible problem using very familiar
techniques.



